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Radioactive Source Detection by Sensor Networks
Sean M. Brennan, Angela M. Mielke, and David C. Torney

Abstract—Detection limits of sensor networks for moving
radioactive sources are characterized, using Bayesian methods
in conjunction with computer simulation. These studies involve
point sources moving at constant velocity, emulating vehicular
conveyance on a straight road. For networks involving ten nodes,
respective Bayesian methods are implementable in real time. We
probe the increased computational requirements incurred by
larger numbers of nodes and source trajectory parameters. The
complexity appears quadratic in the number of nodes and, also,
numerous trajectory parameters may be used. We investigate
the consequences of different levels of background radiation.
Simulations are shown to be useful for ranking candidate node
layouts. We study the detection capabilities of individual sensors
and the scalability of detection with sensor density; near the
detection limit, increasing the number of sensors can accrue
subproportional network sensitivity.

Index Terms—Distributed sensor network, gamma radiation,
Geiger–Müller counter, Monte Carlo integration, Poisson statis-
tics, true negative, true positive.

I. INTRODUCTION

CONSUMMATE detection of nuclear materials transport
is a homeland security desideratum [1]. Portal monitoring

is the respective state of the art, but in the future, distributed
sensor networks (DSNs) could provide wider surveillance
capabilities[2].

As will be seen, our methods for radioactive source detection
are elaborations upon those yielding estimates of source param-
eters [3], i.e., tackling an inverse problem [4]. Herein, network
nodes are stationary and the source is mobile. The nodes are
equipped with a radiation sensor which records counts – such
as a Geiger–Müller counter. For detection, one could implement
a (background dependent) threshold on the summed counts [3],
[5], but for this approach to be effective, the source’s trajec-
tory must, in essence, be known, and here we explore more gen-
eral methods, effective for considerable “universes” of possible
trajectories.

Herein, signal refers to counts derived from the source,
whereas the remainder derive from background. Both com-
ponents are assumed to obey Poisson statistics. Our models
pertain to gamma sources, e.g., the “ falloff” of signal.
Given a network of sensors and their sensor data, comprising
background plus signal, which methods afford ultimate sensi-
tivity of detection?
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Bayesian methods constitute optimal, data-based inference
within a prespecified universe of scenarios [6]. We describe the
implementation of these methods for radioactive source detec-
tion, with scenarios comprising various source amplitudes and
trajectories.

The present aims are elemental. This manuscript provides
preliminary insights into the envelope of effectiveness of
Bayesian detection versus its computational requirements for
networks with 10–320 nodes deployed within a length of
roadway: a simple model with practical ramifications [1], [5].
Bayesian methods for source parameter estimation exhibited
a computational complexity exponential in the number of
parameters estimated [3], limiting their implementability and
fostering concerns that their specialization for detection might
also be too computationally intensive to ever be useful. We es-
tablish herein that, for detection, their domain of effectiveness
should include complicated, realistic models.

II. METHODS

A. Overview of Bayesian Classification Methodology

The foundation for Bayesian methods is a parameterized for-
mula for the probability of the data: data [6]. Here, parame-
ters specify a source’s amplitude and trajectory; formulation of
the probability of sensor data is straightforward, as will be seen
[viz (1) and (2)].

Here, the classes constitute a partition of “parameter space.”
Furthermore, there are two natural classes: either a radioactive
source is or is not incident on a specified domain during a given
time interval.

The probability the data originate from class , denoted ;
, 2, ensues from integrals, , of over the re-

spective part of parameter space – with appropriate parameter
weights (multiplicative factors): the renowned “prior probabili-
ties,” often assumed constant within the classes. Bayes’ rule [viz
(4)] asserts equals the quotient of by the sum of the ’s.

We adopt a natural classification rule: Infer the class with
maximum , and if there is a tie, then infer one of the classes
with maximum uniformly at random. Thus, for given count
data, if the integral , over the class of “incident sources” ex-
ceeds that for “nonincident sources,” then the underlying event
is classed as incident and vice versa.

B.

Let and denote the initial coordinates of the source, and
let it have amplitude and a speed in the positive direction.
The parameter is the expected “counts” (dimensioned ).
For example, a sensor at distance meters from the source, has
an expected rate of signal acquisition equal per second.
Thus, embodies characteristics both of the source and of the
sensor. The counts recorded at a stationary node at position ( ,
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), over the interval [0, ], are taken to be Poisson distributed
with mean

(1)

where (dimensioned ) denotes the expected background
rate. [(1) follows from (7), derived in the Appendix.] For sim-
plicity, is assumed to be the same for all sensors [5].

Thus, if a sensor with expected number of counts records
counts, then the corresponding (Poisson) probability of these

data equals

The product of such “Poisson factors” for all the sensors and
for time intervals with available data constitutes the requisite
formula for the probability of the data, a function of parameters

, , and

data (2)

where is the number of nodes and the number of time in-
tervals over which signals have been collected and where
denotes the number of counts recorded at node over interval

, given the respective expected value .
The probability that the data originate from class is propor-

tional to an integral of data

data (3)

where denotes the parameters ( , , and ); where is
the portion of parameter space constituting class ; and where
the respective volume is denoted ; , 2. Equation (3)
contains no -dependent factor; thus, prior probabilities are as-
sumed constant within the classes.

C. Infrastructure

It is apparent that, in general, (3) must be evaluated numeri-
cally—as is the norm for Bayesian statistics [7]. Even if statis-
tical fluctuations were negligible and even for , integrals
over level sets of (1) would pose a challenge for analytic evalua-
tion. For the present objectives, both the large “dynamic range”
of the integrands and the modest dimensionality (the number of
parameters) commend Monte Carlo (sampling) methods over
standard numerical quadrature methods [8, Ch. 4].

Because of the constant prior probabilities, was approxi-
mated by uniform sampling of : the sum of the integrands at
the sampled points divided by the number of sampled points
converges to , given by (3) [8], [9]. Furthermore, to fore-
stall underflow and overflow, with each succeeding point, the
logarithm of the partial sum was employed and appropriately
incremented.

We implemented (3) for our two classes. Thus, with equal
prior probabilities of belonging to each class, the probability ,

TABLE I
RATES OF “GETTING IT RIGHT” (TP, TN) FOR SOURCES OF DIFFERING

AMPLITUDES, AND BACKGROUNDS, USING DATA FROM 32 SENSORS,
RANDOMLY PLACED IN THE ROADWAY, WITH THE SAME CONFIGURATION IN

ALL CASES. THE ROW FOR b = 10 IS REPRODUCED FROM TABLE II.
1,000 DIFFERENT, UNIFORMLY DISTRIBUTED TRAJECTORIES (OF EACH CLASS)

WERE SIMULATED AND THE MAXIMUM I WAS USED TO PREDICT THE

CLASS. FOR THE CASES WITH b = 1, THE � = 10 , MODESTLY

DIMINISHING THE a = 10 TN RATE FROM WHAT IT WOULD HAVE

BEEN FOR THE DEFAULT VALUES OF �

of belonging to class given count data , equals

(4)

Note that the form of (4) enables omission of the factorials orig-
inating from (2).

Therefore, we uniformly sampled from ; , 2, yielding
source trajectories and amplitudes. For each source, we used (1)
to obtain the respective ; , ,
and was then obtained by sampling a Poisson distribution
with mean [10, Poisson-random-variable generation]. Next,
(4) was evaluated, using (3), and, essentially, the proportion of
times recorded ( ) to obtain the estimate for the
correct classification rate. (We will shortly say more about our
treatment of “ ”.) One thousand trials were typically
implemented, for both classes, to obtain the rates given in the
results. For the first class of incident trajectories, the correct
classification rate is called the true positive (TP) rate, and for
the second class, this rate is called the true negative (TN) rate.

When , i.e., the magnitude of the relative differ-
ence of their logarithms was sufficiently small – not exceeding
a cutoff in magnitude – the respective count of correct classi-
fication was incremented by 1/2. We introduced because, oth-
erwise, near the detection limit, the TP rate sometimes fell to the
vicinity of 0.4 (returning to 0.5 with smaller ). With our current
aims, such presumably artifactual behavior was a distraction,
and it was quashed by using for incident trajectories
and for nonincident trajectories. Unless otherwise
specified, these values of were used. For correct classification
rates greater than 0.6, such ’s had negligible effect.

D. Simulations

Our simulations abstractly model the transport of radioactive
sources in vehicles moving on straight roadways by means of
constant velocity sources. Speeds , between 10 m/s and 30 m/s
were taken to be equally probable. Source amplitudes ranged be-
tween and . Background radiation was usually taken
to have a (relatively high) expected value of 10 [3], a small
enough value so that statistical fluctuations (and discreteness of
the counts) influenced our results [viz Table I]. Data were col-
lected for 20 consecutive time intervals, i.e., , each of
1 s duration.
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The segment of roadway “under surveillance” was taken to
be a rectangle with a width 10 m and length 600 m. The coor-
dinate was parallel to long axis, and the coordinate the short
axis. (For simplicity, all “ coordinates” were assumed equal to
zero.)

Thus, the first class consisted of all trajectories incident on
this rectangle: events one wishes to detect. In detail, centering
the rectangle on the origin, a source of velocity with magnitude

had its initial coordinate uniform over
and its coordinate uniform over [ , 5]. Such trajectories

locate the source within the 10 m by 600 m rectangle for at
least half of the 20 s of data collection. Thus, is a prismatic
portion of parameter space, coordinatized by , and , falling
in dependent intervals , [ , 5] and
[10, 30], respectively.

The second class consisted of parameters for 20-s long trajec-
tories intersecting a square, centered about the rectangle, with
sides two orders of magnitude larger than the circumference
thereof – excluding the trajectories of the first class. We could
have chosen effectively infinitely distant trajectories to consti-
tute this class, with background radiation alone yielding the
count data, but our choice profitably anticipates real-world am-
biguities because sources in “near” mimic the latter’s.

For these sources, using from to points to compute
the ’s effectively suppressed fluctuations in estimates of the
TP and TN rates. A suitable number of points appeared to be
largely dependent on the number of nodes, with appro-
priate for simulations involving ten nodes and for sim-
ulations involving 100 nodes. As the number of nodes increases,
a greater variety of trajectories must be simulated to effectively
circumscribe the trajectories’ data signatures. Fixing the number
of nodes, with did not influence the effectual number of sam-
pled points.

To foster some insights into these key infrastructural compo-
nents of our methodology, we provide the results from simula-
tions of 100 incident and nonincident trajectories with 32 ran-
domly placed nodes and with (yielding a detectable
signal). ranged up to 320 000. Fig. 1 depicts the averages, over
trajectories, of

The “half-numbers” for convergence are approximately
and , for incident and nonincident trajec-

tories, respectively, implying that our main simulation results,
the rates appearing in the ( ) data of Table II,
could manifest residual noise. The averages of
were proportional to 8952.9 and 8365.5, and the averages of

were proportional to 8584.5 and 8365.9, re-
spectively. [Recall that (4) allowed omission of factorials from
Poisson coefficients.]

Thus, in summary, because the basic formulae, such as (3),
are linear in the number of nodes, , the computational com-
plexity of our detection algorithm is approximately .

Fig. 1. Convergence of log(I =I ). Abscissa: 1000 � p � 320000.
Ordinate: h(log(I (p)=I (p)))=(log(I (320000)=I (320000)))i; the
average is over 100, uniformly sampled trajectories. The top curve is derived
from nonincident trajectories; the bottom curve is derived from incident
trajectories.

TABLE II
RATES OF “GETTING IT RIGHT” (TP, TN) FOR SOURCES OF AMPLITUDES 0.1

THROUGH 1000 AND FOR 10, 32, 100, OR 320 NODES, UNIFORMLY

DISTRIBUTED AT RANDOM. TO FACILITATE COMPARISON, THE SAME

CONFIGURATION WAS USED FOR ALL SIMULATIONS WITH THE SAME NUMBER

OF NODES. FOR A GIVEN NODE CONFIGURATION, 1000 DIFFERENT,
UNIFORMLY DISTRIBUTED TRAJECTORIES (OF EACH CLASS) WERE SIMULATED

AND THE MAXIMUM I ’S USED TO PREDICT THE CLASS, USING THE

�’S OF THE METHODS

The runtime for suitable analysis of 20 seconds’ worth of data
simulated for ten nodes, sampling points to compute and

, was approximately 5 s on a 2.2-GHz processor.

III. RESULTS

A. Domain of Surveillance of Individual Sensors

The main motivation for this manuscript is to reveal the de-
pendences of a DSN’s radioactive source detection capabilities
upon its node configuration. Therefore, as prologue, we inves-
tigate the detection capabilities of an individual sensor, simpli-
fied to the characterization of the domain surrounding the source
within which a stationary sensor receives an above-cutoff ex-
pected signal from a constant velocity radioactive source: the
detection domain.

Assume the source moves along the -axis at constant speed
, and crosses the origin at the midpoint of a time interval of

length , during which the signal is collected. Denoting by
and by , the expected signal at a sensor located at ( , )

equals, from (1)

(5)

Fig. 2 is a contour plot of (5), with , centered on the origin,
and , for , . Fig. 2 compasses the change in
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Fig. 2. Iso-signal contours for a moving source. A contour plot of (5), with
` = 1 and� = 1 for 0 � x; y � 3. The contours depict loci where (5) evaluates
to 32 (bottom left), 16, 8, 4, 2, 1, 1/2, 1/4, and 1/8 (top right), respectively.

Fig. 3. B(z). WOLOG ` = 1. The normalized area B(�=�) (= A�=�)
of the portion of the xy plane where (5) exceeds � was determined by Monte
Carlo simulation for various values of the ratio �=�. In detail, 10 points
were uniformly sampled in the rectangle whose diagonal points were (0, 0)
and ( �=� + 1=2, �=�) because placing the sensor elsewhere in the first
quadrant will yield a value of (5) less than �. The proportion of the points
for which the expected signal exceeded � was multiplied by the area of this
rectangle, by four and by �=� to yield the reported values for the function
B(z); viz (6). The abscissa is the logarithm base ten of z; �2 � z � 4. The
ordinate is B(z); � � B(z) � 2�.

shape of the domain from approximately linear (near field) to
circular (far field).

Now consider the area of the detection domain: the portion
of the ( , )-plane such that the signal, given by (5), exceeds a
cutoff . Scaling considerations yield

(6)

where may be found, for instance, by determining the re-
spective areas after arbitrarily fixing . Letting , these areas
were estimated by Monte Carlo integration. appears sig-
moidal in the semilogrithmic Fig. 3.

Note that when , , and when ,
, the limiting cases being the aforementioned cir-

cular and linear domains, respectively.

TABLE III
RATES OF “GETTING IT RIGHT” (TP, TN) FOR SOURCES OF DIFFERING

AMPLITUDES USING DATA FROM 32 SENSORS. FOR THE TOP LINES, THE

SENSORS ARE EQUALLY SPACED AND PLACED ALONG ONE OF THE

600-METER EDGES OF THE RECTANGLE. FOR THE MIDDLE LINES, THE

SENSORS ARE EQUALLY SPACED WITH x = 0 AND �5 � y � 5. THE

BOTTOM LINES, REPRODUCED FROM TABLE II, PERTAIN TO RANDOM

PLACEMENT OF THE 32 SENSORS WITHIN THE ROADWAY. 1,000 DIFFERENT,
UNIFORMLY DISTRIBUTED TRAJECTORIES (OF EACH CLASS) WERE

SIMULATED AND THE MAXIMUM I WAS USED TO PREDICT THE CLASS, AS

DESCRIBED IN THE METHODS

In summary, the area of the detection domain, , is essen-
tially, proportional to . Due to the influence of , how-
ever, (with fixed) can fall short of increasing as much as

, rendering the detection capabilities of a single sensor “less
than linear” in .

B. Simulations of DSN Detection

Many of our simulations concern the placement of DSN
nodes uniformly and randomly inside the 10 m by 600 m
rectangle modeling an inderdicted part of a road. We report
estimates for TP and TN rates, recalling that the former denote
the probability an incident source is inferred to be incident
and the latter denote the probability a nonincident source is
inferred to be nonincident. These rates appear in Tables I
and II, and Table III presents analogous results for alternative
node placements. To interpret these tables, note that over each
1-s interval of data collection, the expected number of signal
counts at a detector at 1 m from the source equalled and,
with the exception of Table I, that the background rate equalled
10 [3].

Note, in Table II, the nonmonotonicity of the TP rates for
. While this may partly be attributable to fluctuations

in our simulations, it is also likely that the implemented node
configuration is comparably effective at detecting sources with

as sources with because nonmonotonicity
persisted in more extensive simulations (data not shown).

In the vicinity of the top-right corner of Table II, it may be
observed that decreases in are compensable by reciprocal in-
creases in . Consider, however, . As decreases
from ten to unity, there is a gradual decline of TP and a pre-
cipitous falloff of TN. Closer scrutiny of these cases is given in
Table IV.

Thus, with , reducing usually results in smaller
“signal” or smaller “signal to noise”, the latter for the incident
sources, and it therefore seems likely that the corresponding
trends for the detection rates, exhibited in Table II, have veracity.
These phenomena are featured in the conclusion.

To initiate investigations into the relationship between the
complexity of “trajectory space” and the computational require-
ments of Bayesian methods, we determined how many sampled
points were required to obtain convergence of the TP and TN
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TABLE IV
HERE, aS = 100, SO THE RESPECTIVE VALUES OF S ARE 100, 32 AND 10.
WITH T STANDING EITHER FOR TP OR TN, E DENOTES THE RESPECTIVE

AVERAGE OF (log I � log I )=(log I + log I ) AND � IS THE

CORRESPONDING STANDARD DEVIATION

rates, to within about 1% of the asymptotic values, for ensem-
bles of trajectories of varying complexities and for networks
with 10 nodes, i.e., . For the foregoing parameter spaces,
the respective .

Simplified spaces were obtained by taking all speeds equal
20 m/s (the average in the foregoing simulations). Comparable
accuracy of the rates was achieved by .

“Complexified” spaces were obtained by giving incident
sources both and components of velocity, with the former
being positive and with the magnitude of the velocity distributed
uniformly between 10 and 30 m/s, as before. Encounters with
the top and bottom (600 m) edges resulted in elastic collisions:
reversing the -component of velocity. Nonincident sources
moved parallel to the axis of the roadway, as before. Only
a modestly greater was required for achieving comparable
accuracy: sufficed for obtaining the comparable level
of accuracy.

For , in the last case the corresponding TP rate was
0.75; Table II gives 0.83 for the analogous case where the ve-
locity is parallel to the -axis. For the simplified ensembles with
only one speed, the corresponding TP rate was 0.88. (The re-
spective TN rates were essentially identical.)

We also simulated alternative node configurations, all with
. One of these configurations had a uniform placement

of its nodes along one of the long edges of the rectangular
domain. Deployment on the “shoulder” has its practical ad-
vantages; deployment within the roadway awaits, among other
things, further miniaturization. The other new configuration
had the nodes uniformly spaced along the axis, transverse
to the roadway—our (flat) caricature of a midsection portal
monitor. It should be noted that a fair proportion of trajectories
in do not pass through the portal, as the parameter space was
not designed as a test for them. TP and TN rates are compared
with the rates given in Table II for uniform, random placement
of the same number of nodes within the rectangular domain.
For convenience, these rates are duplicated in Table III.

Finally, we investigated the effects of changing the back-
ground rate. These simulations had 32 sensors, randomly placed
in the roadway. Results are given in Table I. It appears that
must exceed 32 in order to leverage reductions in , when is
small.

IV. CONCLUSION

Based on our results, implementation of Bayesian methods
on sensor networks may be profitable [11]. Furthermore, ana-
logues of the observed phenomena, such as the nonscalability
of performance, should occur elsewhere [5].

Simulation is effective for evaluating candidate node place-
ments [viz Table III]. For example, one may readily detect
sources of amplitude 31.25 counts , moving at constant
velocity of magnitude between 10 and 30 , when back-
ground equals 10 counts , using 100 randomly placed
sensors in a 6,000 section of roadway. Placement on the
“shoulder” was much less effective.

To illustrate the implications of our results for interdiction,
consider, for instance, a teletherapy unit used for treating
cancer, such as the Theratron Equinox with its full complement
of Cobalt-60 [1]. With its intrinsic shielding and in its “off”
mode, its radiation, at 1 m, is not more than 2 mrem (0.2 Sv)
/min [12]. The latter is about 60 times background [300 mrem
(30 Sv) /yr] [13], and mobile sources emitting such signals
should be detectable by a 10-node, in-roadway DSN, based on
our simulations with and a background of 10 counts

[viz Table II], subject, however, to the following caveats.
Increasing the number of nodes could be appropriate for other
background rates (cf. Table I). In addition, the signal would
plainly be weaker for a source above the roadway than those
modeled herein—at road level. The effects of a substantial
reduction of the prior probability for incidence should be
modest, as is characteristic of orthodox Bayesian methods.
Other configurations, such as the portal-like configuration of
Table III, could be equally advantageous for this application.

From (6), the area under surveillance by a sensor is, to a first
approximation, proportional to , with all else fixed [viz (6)],
and the average total area under surveillance by the DSN is ap-
proximately proportional to . From Table II, we find empir-
ically that for the detection rates essentially depend
only on the product , as one may ascertain from the respec-
tive “off diagonals” of Table II, but otherwise, they depart from
this simple dependence (cf. [5]). One might attempt rationaliza-
tion of the latter phenomena with the -dependent “morphing”
of sensor’s detection domains, depicted in Fig. 2.

Consider, for example, (6) with and versus
and . With , and

and (its average value), from (6), the area “under
surveillance” by each sensor is about 6/10 (

). In both cases, less than 1% of the area of the domain of
incidence is under surveillance by precisely one sensor, and less
than 0.01% by more than one sensor, implying that the “areal
predictions” for one sensor should extend to the network. Fur-
thermore, 100 sensors with should jointly have greater
area under surveillance than 10 sensors with , and it
follows that the first sensor net should have correspondingly in-
creased TP rate, at odds with our results.

Our recourse is in stochasticity. Near the detection limit, the
latter phenomena must reflect the chance occurrence of data
mimicking that of a source. Attention may focus on signal-to-
background considerations, as this underlies detection. Let de-
crease and let . Although the expected number of sen-
sors receiving an above-cutoff signal would remain the same,
the number of “other lines” of sensors – receiving background
alone – would increase . The implication is that an ef-
fective cutoff for detection must be raised as decreases. Based
on Gaussian statistics, this cutoff . Although this de-
pendence is weak, it nevertheless could suffice, in the range
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, for rationalizing the observed departures from
-dependence. This hypothesis yields the prediction that, for

all values of , decreases in are, ultimately, not compens-
able by reciprocal increases in . Our data are not extensive
enough to distinguish between the previously employed de-
pendence and this dependence. It would be useful to
clarify the situation and, thereby, to be able to predict analo-
gous behavior for more complicated universes of trajectories.
The nonscaling should be much more apparent for sensor net-
works deployed with three dimensions.

The computational requirements of the Bayesian methods
have been shown to be appreciable but not prohibitive. Un-
like the estimation of the parameters of a radioactive source,
for which the runtime scales exponentially in the number of
parameters [3], for detection, it is a boon that realistic source
parameter spaces appear to be amenable to Bayesian methods
because real-world problems involve more complexity than
modeled herein. The intrinsic difficulty of detection seems to
increase with this complexity [5] – a topic worthy of theoretical
investigation.

For our relatively uncomplicated parameter spaces, in five
CPU seconds, 20 seconds’ worth (20 time intervals) of data from
ten nodes were analyzed, with negligible memory requirements.
Thus, for modest , minimal improvements will be required
to implement them on the bare-bones processors typically ac-
corded DSN nodes, in order to achieve Bayesian detection in
real time. For instance, quasi Monte Carlo methods offer compa-
rable accuracy of integration with reduced computational over-
head [3], [14].

Although it sufficed to address many issues empirically
herein, additional challenges for theoreticians remain. It would
be useful, for example, to predict the “fluctuations in classifi-
cation” as a function of the extent of sampling of parameter
space: predictions germane to statistical properties of estimates
for [viz Fig. 1]. A more ambitious aim would be an
asymptotic upper bound on the Bayesian methodology’s effec-
tual runtime, applicable when the number of nodes increases
indefinitely: extrapolating from the observed approximately
quadratic dependence on the number of nodes.

In practice, most of the nodes’ data are no more than noise,
and, for efficiency, one should seek ways to adaptively discover
profitable subsets of nodes for the Bayesian computation.
Markov chain Monte Carlo might be useful for constructing
subsets of fixed size which maximize , and detection
could be based on the running-average maximum probability.
This approach might, by curtailing noise, improve the detec-
tion rates over those based on analyzing the data from all the
nodes, as pursued herein—without significantly degrading the
detection rates. Precedent exists in the efficacious detection of
sources with known trajectories [3].

APPENDIX

INTEGRAL OF EXPECTED SIGNAL AMPLITUDE

The expected instantaneous rate of signal acquisition is as-
sumed to be inversely proportional to the distance squared from
the source, i.e., detection is assumed to be isotropic [3]. Then,
when the relative velocity between the source and the node is

constant, the following integral, multiplied by the amplitude of
the source (with dimensions ) equals the expected signal
(the expected number of signal counts) collected by a sensor be-
tween times 0 and ( ):

where denotes the difference between source and sensor co-
ordinates, at time 0, and with denoting the difference between
the source and sensor velocities (assumed constant between 0
and ). Here, (because, otherwise, the integral is infinite).
Two cases present themselves: i) (with denoting
the Euclidean norm of ) and ii) otherwise.

i) .
i.a) Here, if , i.e., with ,

then
,

otherwise.

ii.b) Alternatively, i.e., , “completing
the square” readily yields

(7)
where the range of the arctangents is , and
where

with . Herein, (7) is the case of interest.
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